skip to main content


Search for: All records

Creators/Authors contains: "Shivkumar, Hinna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present optical, radio, and X-ray observations of a rapidly evolving transient SN2019wxt (PS19hgw), discovered during the search for an electromagnetic counterpart to the gravitational-wave (GW) trigger S191213g. Although S191213g was not confirmed as a significant GW event in the off-line analysis of LIGO-Virgo data, SN2019wxt remained an interesting transient due to its peculiar nature. The optical/near-infrared (NIR) light curve of SN2019wxt displayed a double-peaked structure evolving rapidly in a manner analogous to currently known ultrastripped supernovae (USSNe) candidates. This double-peaked structure suggests the presence of an extended envelope around the progenitor, best modeled with two components: (i) early-time shock-cooling emission and (ii) late-time radioactive56Ni decay. We constrain the ejecta mass of SN2019wxt atMej≈ 0.20M, which indicates a significantly stripped progenitor that was possibly in a binary system. We also followed up SN2019wxt with long-term Chandra and Jansky Very Large Array observations spanning ∼260 days. We detected no definitive counterparts at the location of SN2019wxt in these long-term X-ray and radio observational campaigns. We establish the X-ray upper limit at 9.93 × 10−17erg cm−2s−1and detect an excess radio emission from the region of SN2019wxt. However, there is little evidence for SN1993J- or GW170817-like variability of the radio flux over the course of our observations. A substantial host-galaxy contribution to the measured radio flux is likely. The discovery and early-time peak capture of SN2019wxt in optical/NIR observations during EMGW follow-up observations highlight the need for dedicated early, multiband photometric observations to identify USSNe.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Abstract

    The early K-type T-Tauri star, V1298 Tau (V= 10 mag, age ≈ 20–30 Myr) hosts four transiting planets with radii ranging from 4.9 to 9.6R. The three inner planets have orbital periods of ≈8–24 days while the outer planet’s period is poorly constrained by single transits observed with K2 and the Transiting Exoplanet Survey Satellite (TESS). Planets b, c, and d are proto–sub-Neptunes that may be undergoing significant mass loss. Depending on the stellar activity and planet masses, they are expected to evolve into super-Earths/sub-Neptunes that bound the radius valley. Here we present results of a joint transit and radial velocity (RV) modeling analysis, which includes recently obtained TESS photometry and MAROON-X RV measurements. Assuming circular orbits, we obtain a low-significance (≈2σ) RV detection of planet c, implying a mass of19.88.9+9.3Mand a conservative 2σupper limit of <39M. For planets b and d, we derive 2σupper limits ofMb< 159MandMd< 41M, respectively. For planet e, plausible discrete periods ofPe> 55.4 days are ruled out at the 3σlevel while seven solutions with 43.3 <Pe/d< 55.4 are consistent with the most probable 46.768131 ± 000076 days solution within 3σ. Adopting the most probable solution yields a 2.6σRV detection with a mass of 0.66 ± 0.26MJup. Comparing the updated mass and radius constraints with planetary evolution and interior structure models shows that planets b, d, and e are consistent with predictions for young gas-rich planets and that planet c is consistent with having a water-rich core with a substantial (∼5% by mass) H2envelope.

     
    more » « less